Seminare
Seminare

Data Science mit Python - Einführung in Python

Webinar - GFU Cyrus AG

Sie können grundlegende Schritte mit Python im Bereich Data Science anwenden, so dass ein selbstständiges Arbeiten möglich ist. Wege, um weitergehende Algorithmen und Methoden in Python zu finden sind bekannt, um das Wissen auch nach dem Seminar weiter ausbauen zu können. Sie haben einen Überblick über verwendete Algorithmen im Machine Learning und können diese voneinander differenzieren und in Python anwenden. Sie arbeiten überwiegend selbstständig mit Unterstützung des Trainers, um das Erlernte direkt umzusetzen und anzuwenden. Anhand von Datenbeispielen werden die wichtigsten Bibliotheken (pandas, seaborn, scikit-learn) besprochen und in umfangreichen Übungen trainiert. 
Termin Ort Preis*
11.08.2025- 13.08.2025 Köln 2.296,70 €
11.08.2025- 13.08.2025 online 2.296,70 €
08.04.2026- 10.04.2026 Köln 2.296,70 €
08.04.2026- 10.04.2026 online 2.296,70 €

Alle Termine anzeigen

*Alle Preise verstehen sich inkl. MwSt.

Detaillierte Informationen zum Seminar

Inhalte:
  • Einführung
    • Kurzer Hintergrund zu Python und Anaconda 
    • Installieren von neuen Paketen
    • Arbeiten mit Jupyter Lab

  • Einführung in das Data Science Paket pandas
    • Elemente eines pandas data.frame 
    • Eine Zeile/Spalte ansprechen, hinzufügen, löschen und verändern 
    • Boolean indexing
    • Ein leeres data.frame erstellen
    • Überblick über Methoden, ein data.frame anzupassen (Spaltennamen ändern, Werte ersetzen, ein data.frame sortieren

  • Grundlegende Statistiken mit pandas
    • Überblick über Statistiken, die mit einem data.frame berechnen werden kann (Anzahl an gültigen Beobachtungen, Summe, Mittelwert, Median, Minimum, Maximum, Varianz,...) 
    • Eine Kreuztabelle (Kontingenztafel) berechnen
    • Analysen mit grouphy gruppieren
    • Fehlende Werte ergänzen

  • Daten einlesen
    • Das Arbeitsverzeichnis in Python setzen 
    • Ein CSV einlesen und schreiben und Überblick über die nützlichsten Parameter hierfür
    • Python's pickle modul zum Speichern von Python Objekten
    • Verschiedene Datentypen konvertieren (integer, unsigned integer, float, string)

  • Visualisierung mit matplotlib und seaborn
    • Die Hauptelemente beim Plotten mit matplotlib
    • Einen Plot anpassen (x- und y-Achse ändern, Beschriftungen, Legende und Titel ändern) und speichern
    • Auswahl von Farben
    • Erstellen von Scatterplot, Linienplot, Barplot, Boxplot mit seaborn

  • Control Flows
    • Die range() Funktion
    • Eine eigene Funktion schreiben
    • Default Parameter in einer Funktion setzen
    • For Schleifen
    • If-Else Bedingungen
    • Logische Vergleichsoperatoren
    • Zuweisungsoperatoren

  • Überblick über Machine Learning
    • Was ist Machine Learning
    • Die Einteilung von Algorithmen im Machine Learning (supervised Learning - unsupervised learning - reinforcement learning)
    • Overfitting, Train-Test-Split und cross-validation (Kreuzvalidierung)

  • Machine Learning Algorithmen (Theorie und Praxis) 
    • Einführung in den Algorithmus (Lineare Regression, Entscheidungsbaum)
    • Train-Test Split der Daten
    • Umsetzung des Algorithmus in Python 
    • Validieren der Ergebnisse (u.a. confusion matrix, sensitivity, accuracy)

  • Optional: Weitere Machine Learning Algorithmen in Python
    • Erklärung von Random Forest und K-means
    • Umsetzung dieser Algorithmen in Python 
    • Validieren der Ergebnisse
    • Cross-validation (Kreuzvalidierung) 




Dauer/zeitlicher Ablauf:
3 Tage
Zielgruppe:
Technisch interessierte Fachkräfte bzw. Projektleiter, welche einen Einstieg in die Programmiersprache Python wünschen, um eigenständig an Data Science Projekten mitzuarbeiten oder ein besseres Verständnis für Python Code zu erhalten. Die Teilnehmer benötigen keine Erfahrung mit Python, sollten aber schon grundlegende Erfahrung mit einer Programmiersprache gemacht haben, um das Grundkonzept einer Programmiersprache zu verstehen. Überdies ist ein Basiswissen von grundlegenden statistischen Begriffen hilfreich (wie Mittelwert, Median, Perzentil).
Seminarkennung:
R72435
Nach unten
Nach oben
Wir setzen Analyse-Cookies ein, um Ihre Zufriedenheit bei der Nutzung unserer Webseite zu verbessern. Diese Cookies werden nicht automatisiert gesetzt. Wenn Sie mit dem Einsatz dieser Cookies einverstanden sind, klicken Sie bitte auf Akzeptieren. Weitere Informationen finden Sie hier.
Akzeptieren Nicht akzeptieren









Um Spam abzuwehren, geben Sie bitte die Buchstaben auf dem Bild in das Textfeld ein:

captcha



Bei der Verarbeitung Ihrer personenbezogenen Daten im Zusammenhang mit der Kontaktfunktion beachten wir die gesetzlichen Bestimmungen. Unsere ausführlichen Datenschutzinformationen finden Sie hier. Bei der Kontakt-Funktion erhobene Daten werden nur an den jeweiligen Anbieter weitergeleitet und sind nötig, damit der Anbieter auf Ihr Anliegen reagieren kann.







Um Spam abzuwehren, geben Sie bitte die Buchstaben auf dem Bild in das Textfeld ein:

captcha