Seminare
Seminare

Grundlagen des Deep Learning in TensorFlow und PyTorch

Seminar - GFU Cyrus AG

Dieser Kurs richtet sich an Einsteiger:innen im Bereich Deep Learning, die eine solide Grundlage der wichtigsten Konzepte suchen, die für die Erstellung von Deep-Learning-Modellen mit bekannten Methoden erforderlich sind. Der Kurs geht davon aus, dass Sie zuvor keine umfangreichen Erfahrungen mit neuronalen Netzen und Deep Learning gemacht haben und beginnt mit einer Übersicht über die für Deep Learning erforderlichen Grundlagen des maschinellen Lernens. Dann wird erklärt, wie man Daten durch Bereinigung und Vorverarbeitung für Deep Learning vorbereitet, und es werden nach und nach neuronale Netze und die überwachten neuronalen Netzarchitekturen wie Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) und Generative Adversarial Networks (GANs) sowie unüberwachte Architekturen wie Autoencoder (AEs), Variational Autoencoder (VAEs) und Restricted Boltzmann Machines (RBMs) und Transformer vorgestellt.

 

Zu den praktischen Anwendungen werden die Klassifizierung von Texten in vordefinierte Kategorien, die syntaktische Analyse, die Stimmungsanalyse, die synthetische Generierung von Text und das Tagging von Sprachbestandteilen behandelt. Im Rahmen der Bildverarbeitung werden die Klassifizierung von Bildern in verschiedene Kategorien und der fortgeschrittenen Objekterkennung mit zugehörigen Bildkommentaren sowie die Generierung von Bildern mithilfe von Autoencodern und GANs in Programmcode (Python) umgesetzt.
Termin Ort Preis*
firmenintern auf Anfrage auf Anfrage
*Alle Preise verstehen sich inkl. MwSt.

Detaillierte Informationen zum Seminar

Inhalte:

Das Spektrum der Themen deckt die wichtigsten Anwendungen von Deep Learning ab, kombiniert mit realistischen Anwendungsfällen und Datensätzen. U. a. werden folgende Konzepte behandelt:

  •  Künstliche Neuronale Netze (ANN)
    • Backpropagation, Regularisierung
    • Stochastischer Gradientenabstieg, verschiedene Optimierer

  • Faltungsneuronale Netze (CNNs) 
    • MAX Pooling, CNN Architekturen

  • Rekurrente Neuronale Netze (RNNs), GRUs, LSTMs
    • Sequenzanalyse, Sprachmodelle

  • Seq2Seq
    • Encoder-Decoder

  • Transformer (BERT, T5, GPT2) und Vision Transformer
    • Attention, Transfer Learning und Fine Tuning 
    • Worteinbettungen jenseits von word2vec und GloVe

  • Autoencoder, Variations-Autoencoder (VAE)
  • Siamesische Netzwerke in Pytorch
  • Generative Modelle
    • Generative Adversarial Networks (GANs)
    • Deepfake


 

Der Schwerpunkt des Seminars liegt auf der Umsetzung von Projekten. In den folgenden Modulen werden die Programme (Python) auf Basis Tensorflow bzw. Pytorch mit der API Keras entwickelt:

  • Computer Vision (Bildverarbeitung)
    • Gesichtserkennung (Alter, Geschlecht, Emotionen, Ethnizität)
    • Lagebestimmung von Objekten auf Bild- bzw. Videodaten 
    • Erkennen von Objekten auf Kamerabildern, um so z.B. eine Sortierung zu ermöglichen
    • Analyse und Diagnose anhand medizinischer Scans 
    • Erkennen von Anomalien oder visuellen Defekten während eines Produktionsprozesses
    • GAN-basierte Bild- und Videoeinfärbung
    • Textuelle Beschreibungen von Bildern 
    • IOT: Predictive Maintenance (vorausschauende Instandhaltung) 
    • IOT: Erkennen von Anomalien oder visuellen Defekten während eines Produktionsprozesses


 

  • Natural Language Processing (Textverarbeitung)
    • Automatische Übersetzung von Texten
    • Textzusammenfassungen (extraktive und abstraktive)
    • Automatische Beantwortung von Fragen
    • Stimmungsanalyse (Sentiment) von Texten
    • Chatbot


 

  • Zeitreihenanalyse (Prognose) als Deep Learning Problem
    • Vorhersage von multivariaten Zeitreihen mit RNNs
    • Beispiele: Bedarfsprognose, Regenvorhersage, COVID-19, Algorithmic Trading




Zielgruppe:
Dieser Kurs richtet sich an angehende Deep-Learning-Ingenieur:innen (Informatiker:innen, Software-Ingenieur:innen), die sich mit den Bausteinen von Deep Learning vertraut machen wollen. Es sind keine Vorkenntnisse im Bereich Neuronaler Netze oder maschinelles Lernen erforderlich. Eine gewisse Vertrautheit mit linearer Algebra und Python-Programmierung wird vorausgesetzt.
Seminarkennung:
S2571
Nach unten
Nach oben
Wir setzen Analyse-Cookies ein, um Ihre Zufriedenheit bei der Nutzung unserer Webseite zu verbessern. Diese Cookies werden nicht automatisiert gesetzt. Wenn Sie mit dem Einsatz dieser Cookies einverstanden sind, klicken Sie bitte auf Akzeptieren. Weitere Informationen finden Sie hier.
Akzeptieren Nicht akzeptieren









Um Spam abzuwehren, geben Sie bitte die Buchstaben auf dem Bild in das Textfeld ein:

captcha



Bei der Verarbeitung Ihrer personenbezogenen Daten im Zusammenhang mit der Kontaktfunktion beachten wir die gesetzlichen Bestimmungen. Unsere ausführlichen Datenschutzinformationen finden Sie hier. Bei der Kontakt-Funktion erhobene Daten werden nur an den jeweiligen Anbieter weitergeleitet und sind nötig, damit der Anbieter auf Ihr Anliegen reagieren kann.







Um Spam abzuwehren, geben Sie bitte die Buchstaben auf dem Bild in das Textfeld ein:

captcha