Seminare
Seminare

Künstliche Intelligenz selbst programmieren

Webinar - GFU Cyrus AG

Ziel des dreitägigen Seminars ist es, Teilnehmenden ohne Vorkenntnisse in Python ein fundiertes Verständnis der Künstlichen Intelligenz zu vermitteln und zu zeigen, dass es möglich ist auch ohne Vorkenntnisse in Python selbstständig Neuronale Netze im Framework Tensorflow / Keras zu trainieren.



Es wird ein tiefgreifendes Verständnis für Schlüsselkonzepte der Künstlichen Intelligenz, insbesondere Deep Learning, aufgebaut. Dabei werden praxisnahe Themen wie Datenverarbeitung, Multi-Layer Perceptrons, Convolutional Neural Networks Techniken wie Data Augmentation und Transfer Learning behandelt. 



Das Seminar zielt darauf ab, die Teilnehmenden in die Lage zu versetzen, grundlegende KI-Anwendungen selbstständig zu entwickeln und anzuwenden. Ein hoher Anteil an praktischen Übungen gewährleistet, dass die Teilnehmenden nicht nur theoretisches Wissen erwerben, sondern auch die Fähigkeiten und das Vertrauen entwickeln, das Gelernte unmittelbar in realen Anwendungsszenarien umzusetzen.
Termin Ort Preis*
02.02.2026- 04.02.2026 Köln 2.296,70 €
02.02.2026- 04.02.2026 online 2.296,70 €
02.11.2026- 04.11.2026 online 2.296,70 €
02.11.2026- 04.11.2026 Köln 2.296,70 €

Alle Termine anzeigen

*Alle Preise verstehen sich inkl. MwSt.

Detaillierte Informationen zum Seminar

Inhalte:
  • Einführung in Python
    • Python Syntax
    • Besonderheiten von Python
    • Anaconda Environment, Installation von Python Modulen

  • Einführung in die Künstliche Intelligenz
    • Einführung und Geschichte des Deep Learning 
    • KI, Deep Learning und Machine Learning

  • Daten Vorbereitung
    • Overfitting beim Trainieren von Machine Learning Algorithmen
    • Train-Validation-Test Datensplit zur Detektion von Overfitting
    • Datennormalisierung
    • One-Hot encoding
    • Anwendung auf den MNIST Datensatz

  • Multi Layer Perceptron Teil 1
    • Wichtige Bauteile eines MLPs: Perceptron, Gewichte, Bias
    • Non-linearities (Aktivierungsfunktionen)
    • Softmax bei Klassifizierungsaufgaben
    • Verschiedene Loss-Funktionen 
    • Backpropagation: Trainieren von den Gewichten 
    • Initialisierung der Gewichte 
    • Epoche und Batch-Size

  • CNN
    • Ein Convolution layer (Faltungsschicht)
    • Filter
    • Padding und Stride bei der Convolution
    • Max-Pooling Layer 
    • Was lernt ein CNN auf den unterschiedlichen Layern?

  • Klassifizierung von Bildern
    • Regularisierungen: L2 Regularisierung, Drop-Out, Batch Normalisation 
    • Ein trainiertes Model laden

  • Keras Callbacks
    • Einen Callback in Keras umsetzen
    • Model Gewichte und Architektur speichern
    • Early Stopping
    • Training Rate Scheduler
    • MLFlow zur Visualisierung des Trainingsverlaufs

  • Trainieren mit wenigen Daten: Data Augmentierung und Transfer Learning
    • Erweiterung des Trainings-Datensatzes durch Data Augmentation
    • Vortrainierte Netzwerke für seine Aufgabe verwenden und nachtrainieren (Fine-Tuning)




Dauer/zeitlicher Ablauf:
3 Tage
Zielgruppe:
Das Seminar richtet sich an Teilnehmende, die über Programmierkenntnisse in einer anderen Sprache verfügen, aber nicht in der Sprache Python, so dass diese zwar noch nicht Spezifika von Python verstehen, aber allgemein Code aus einer anderen Programmiersprache lesen können. Teilnehmende erhalten einen Einstieg in Deep Learning mit dem Framework Tensorflow / Keras. 
Seminarkennung:
R81720
Nach unten
Nach oben
Wir setzen Analyse-Cookies ein, um Ihre Zufriedenheit bei der Nutzung unserer Webseite zu verbessern. Diese Cookies werden nicht automatisiert gesetzt. Wenn Sie mit dem Einsatz dieser Cookies einverstanden sind, klicken Sie bitte auf Akzeptieren. Weitere Informationen finden Sie hier.
Akzeptieren Nicht akzeptieren









Um Spam abzuwehren, geben Sie bitte die Buchstaben auf dem Bild in das Textfeld ein:

captcha



Bei der Verarbeitung Ihrer personenbezogenen Daten im Zusammenhang mit der Kontaktfunktion beachten wir die gesetzlichen Bestimmungen. Unsere ausführlichen Datenschutzinformationen finden Sie hier. Bei der Kontakt-Funktion erhobene Daten werden nur an den jeweiligen Anbieter weitergeleitet und sind nötig, damit der Anbieter auf Ihr Anliegen reagieren kann.







Um Spam abzuwehren, geben Sie bitte die Buchstaben auf dem Bild in das Textfeld ein:

captcha