Seminare
Seminare

Machine Learning mit Python

Seminar - GFU Cyrus AG

Sie lernen die Grundlagen und die praktische Anwendung der gängigsten Lernalgorithmen aus der Scikit-Learn Bibliothek. Sie bekommen ein Gespür für den Wert Ihrer Daten und dafür, wie Sie diese Daten in Ihrem Geschäftsfeld einsetzen können, um Automatisierungsprozesse voranzutreiben. Sie verstehen die verschiedenen Lernalgorithmen in Theorie und Praxis (lineare und logistische Regression, Support Vector Machine, Decision Tree, Naive Bayes) und üben die Anwendung anhand praktischer Beispiele ein. Die Konzepte werden anhand von Folien anschaulich erklärt, an Beispielen verdeutlicht und gemeinsam in Python umgesetzt. Passgenaue Aufgabenstellungen ergänzen den Lernprozess und ermöglichen es Ihnen, die verschiedenen Lernszenarien kennenzulernen und einzuüben. Am Ende des Seminars sind Sie in der Lage, Daten zielsicher zu extrahieren, Algorithmen anzulernen und zur Klassifizierung oder Prognose einzusetzen. 
Termin Ort Preis*
firmenintern auf Anfrage auf Anfrage
*Alle Preise verstehen sich inkl. MwSt.

Detaillierte Informationen zum Seminar

Inhalte:
  • Daten ziehen und aufbereiten
    • Dateien im Verzeichnis ansteuern
    • Standardverfahren zum Lesen/Schreiben von Text- und CSV-Dateien
    • SQL-Datenbanken ansteuern
    • Arbeiten mit Datenmatrizen: Einführung in Numpy & Pandas
       
    • Daten inspizieren und beschreiben
    • Fehlende Werte behandeln

  • Machine Learning Grundlagen 
    • Grundlagen, Varianten und Techniken des Machine Learnings.
    • Arbeiten mit der Machine Learning Bibliothek scikit-learn.
    • Einfache Zusammenhänge zwischen stetigen Variablen modellieren: Lineare Regression
    • Klassifizieren mit Logistic Regression, Softmax und Support Vector Machine.
    • Modelle evaluieren: Accuracy, Precision, Recall & Confusion matrix
    • Unterteilen der Daten in Trainings- und Testdaten

  • Feature-Extraction 
    • Kategoriale Daten vorbereiten: One-Hot Codierung
    • Standardisierung von Daten
    • Dimensionsreduktion mit PCA (Principle Component Analysis)
    • Aufbereitung von Textdaten: Tokenizer und Bag-of-words.

  • Machine Learning Workflow
    • Daten aufarbeiten und zusammenführen (DataMapper)
    • Pipelines einrichten
    • Speichern und laden trainierter Klassifizierer

Zielgruppe:
Technisch interessierte Fachkräfte bzw. Projektleiter:innen, die einen Einstieg in die Praxis der Machine Learning Techniken suchen, um eigenständig Data Science Projekte zu gestalten. Die TeilnehmerInnen sollten über gute Kenntnisse in der Programmiersprache Python (Erstellung von Funktionen, Schleifen, Lesen und Schreiben von Daten) und Grundkenntnisse im Umgang mit der Python-Bibliothek Pandas verfügen. Darüber hinaus ist die Kenntnis grundlegender statistischer Konzepte (z.B. Mittelwert, Standardabweichung, Korrelation, Regression) hilfreich
Seminarkennung:
S2139
Nach unten
Nach oben
Wir setzen Analyse-Cookies ein, um Ihre Zufriedenheit bei der Nutzung unserer Webseite zu verbessern. Diese Cookies werden nicht automatisiert gesetzt. Wenn Sie mit dem Einsatz dieser Cookies einverstanden sind, klicken Sie bitte auf Akzeptieren. Weitere Informationen finden Sie hier.
Akzeptieren Nicht akzeptieren









Um Spam abzuwehren, geben Sie bitte die Buchstaben auf dem Bild in das Textfeld ein:

captcha



Bei der Verarbeitung Ihrer personenbezogenen Daten im Zusammenhang mit der Kontaktfunktion beachten wir die gesetzlichen Bestimmungen. Unsere ausführlichen Datenschutzinformationen finden Sie hier. Bei der Kontakt-Funktion erhobene Daten werden nur an den jeweiligen Anbieter weitergeleitet und sind nötig, damit der Anbieter auf Ihr Anliegen reagieren kann.







Um Spam abzuwehren, geben Sie bitte die Buchstaben auf dem Bild in das Textfeld ein:

captcha