Seminare
Seminare

GitHub Copilot und Python

Seminar - GFU Cyrus AG

Am Ende des Seminars sind die Teilnehmenden in der Lage, GitHub Copilot umfassend zu nutzen, um ihre Data Science- und Machine Learning-Entwicklungsprojekte effizienter und produktiver zu gestalten.
Termin Ort Preis*
04.09.2025- 05.09.2025 Köln 1.630,30 €
04.09.2025- 05.09.2025 online 1.630,30 €
10.12.2026- 11.12.2026 online 1.630,30 €
10.12.2026- 11.12.2026 Köln 1.630,30 €

Alle Termine anzeigen

*Alle Preise verstehen sich inkl. MwSt.

Detaillierte Informationen zum Seminar

Inhalte:
  • Einführung in GitHub Copilot für Data Science und Machine Learning
    • Überblick und Funktionsweise: Erklärung, was GitHub Copilot ist, seine KI-Technologie und wie es speziell für Data Science und Machine Learning genutzt werden kann.
    • Vorteile und Einsatzmöglichkeiten: Diskussion der Vorteile von GitHub Copilot, wie Zeiteinsparung, Verbesserung der Codequalität und Unterstützung bei komplexen Data Science- und ML-Aufgaben.

  • Installation und Konfiguration
    • Installationsprozess: Schritt-für-Schritt-Anleitung zur Installation von GitHub Copilot in gängigen Entwicklungsumgebungen wie Jupyter Notebook, VS Code und PyCharm.
    • Erste Konfiguration: Einrichtung und Anpassung der Einstellungen von GitHub Copilot, um den individuellen Anforderungen für Data Science und ML gerecht zu werden.

  • Datenaufbereitung und Vorverarbeitung
    • Datenerfassung und -bereinigung: Demonstration, wie GitHub Copilot bei der Erfassung und Bereinigung von Daten unterstützt; Beispiele für den Umgang mit fehlenden Werten und Anomalien.
    • Feature Engineering: Nutzung von Copilot zur Erstellung neuer Features aus Rohdaten; Techniken wie Skalierung, Normalisierung und One-Hot-Encoding.

  • Explorative Datenanalyse (EDA)
    • Datenvisualisierung: Anwendung von Copilot zur Erstellung von Visualisierungen mit Bibliotheken wie Matplotlib, Seaborn und Plotly; Darstellung von Verteilungen, Zusammenhängen und Trends in den Daten.
    • Statistische Analyse: Nutzung von Copilot zur Durchführung statistischer Analysen und Hypothesentests; Berechnung von Kennzahlen wie Mittelwert, Median und Standardabweichung.

  • Modellauswahl und -training
    • Auswahl von ML-Algorithmen: Unterstützung durch Copilot bei der Auswahl geeigneter Machine Learning-Algorithmen für verschiedene Aufgaben; Beispiele für die Anwendung von Algorithmen wie Lineare Regression, Entscheidungsbäume und KNN.
    • Training und Validierung: Automatisierung des Model-Trainings und der Validierung; Techniken zur Hyperparameter-Optimierung und Kreuzvalidierung.

  • Modellbewertung und -optimierung
    • Modellbewertung: Anwendung von Metriken zur Bewertung der Modellleistung, wie Genauigkeit, Präzision, Recall, F1-Score und ROC-AUC.
    • Modelloptimierung: Nutzung von Techniken zur Verbesserung der Modellleistung; Beispiele für Regularisierung, Feature-Selektionsverfahren und Ensemble-Methoden.

  • Zeitreihenanalyse und Prognosemodelle
    • Datenvorbereitung für Zeitreihen: Vorbereitung von Zeitreihendaten für die Modellierung; Techniken wie Glättung, Differenzierung und Saisonalitätsanpassung.
    • Erstellung und Bewertung von Prognosemodellen: Anwendung von Modellen wie ARIMA, LSTM und Prophet zur Prognose; Bewertung der Modellleistung mit spezifischen Zeitreihenmetriken.

  • Unüberwachtes Lernen und Clustering
    • Clustering-Methoden: Einführung in Clustering-Algorithmen wie K-Means, DBSCAN und Hierarchical Clustering; Anwendung von Copilot zur Implementierung und Optimierung dieser Algorithmen.
    • Dimensionalitätsreduktion: Nutzung von Techniken wie PCA, t-SNE und UMAP zur Reduktion der Datenkomplexität und Verbesserung der Modellinterpretierbarkeit.

  • NLP und Textanalyse
    • Vorverarbeitung von Textdaten: Unterstützung durch Copilot bei der Tokenisierung, Stemming, Lemmatization und Entfernung von Stoppwörtern.
    • Modellierung und Analyse: Anwendung von Techniken wie TF-IDF, Word2Vec und BERT zur Textklassifikation und -analyse; Beispiele für die Implementierung und Bewertung von NLP-Modellen.

  • Praxisbeispiele und Best Practices
    • Implementierung eines Data Science-Projekts: Durchführung eines Beispielprojekts zur Anwendung der erlernten Techniken und Methoden; Schritt-für-Schritt-Anleitung von der Planung bis zur Umsetzung.
    • Erfahrungsberichte und Best Practices: Präsentation realer Fallstudien und Best Practices zur erfolgreichen Implementierung und Nutzung von GitHub Copilot in Data Science- und Machine Learning-Projekten.

Dauer/zeitlicher Ablauf:
2 Tage
Zielgruppe:
Dieses Seminar richtet sich an Data Scientists, Machine Learning Engineers und Softwareentwickler, die GitHub Copilot zur Automatisierung ihrer Arbeitsprozesse und zur Verbesserung ihrer Produktivität nutzen möchten. Grundlegende Kenntnisse in Python und Machine Learning sind erforderlich.
Seminarkennung:
82326
Nach unten
Nach oben
Wir setzen Analyse-Cookies ein, um Ihre Zufriedenheit bei der Nutzung unserer Webseite zu verbessern. Diese Cookies werden nicht automatisiert gesetzt. Wenn Sie mit dem Einsatz dieser Cookies einverstanden sind, klicken Sie bitte auf Akzeptieren. Weitere Informationen finden Sie hier.
Akzeptieren Nicht akzeptieren









Um Spam abzuwehren, geben Sie bitte die Buchstaben auf dem Bild in das Textfeld ein:

captcha



Bei der Verarbeitung Ihrer personenbezogenen Daten im Zusammenhang mit der Kontaktfunktion beachten wir die gesetzlichen Bestimmungen. Unsere ausführlichen Datenschutzinformationen finden Sie hier. Bei der Kontakt-Funktion erhobene Daten werden nur an den jeweiligen Anbieter weitergeleitet und sind nötig, damit der Anbieter auf Ihr Anliegen reagieren kann.







Um Spam abzuwehren, geben Sie bitte die Buchstaben auf dem Bild in das Textfeld ein:

captcha