Seminare
Seminare

Live-Online: Practical Data Science with Amazon SageMaker

Webinar - Haufe Akademie GmbH & Co. KG

Lerne einen Tag im Leben eines Datenwissenschaftlers/einer Datenwissenschaftlerin von einem/einer erfahrenen AWS-Dozenten/AWS-Dozentin kennen.
Termin Ort Preis*
28.11.2024 online 868,70 €
30.01.2025 online 868,70 €
10.03.2025 online 868,70 €
*Alle Preise verstehen sich inkl. MwSt.

Detaillierte Informationen zum Seminar

Inhalte:

Künstliche Intelligenz und maschinelles Lernen (KI/ML) sind auf dem Vormarsch. In diesem Kurs wirst du einen Tag im Leben einer/eines Datenwissenschaftlers/Datenwissenschaftlerin verbringen, damit du effizient mit Datenwissenschaftler:innen zusammenarbeiten und Anwendungen erstellen können, die mit ML integriert werden. Du lernst den grundlegenden Prozess kennen, den Datenwissenschaftler:innen zur Entwicklung von ML-Lösungen auf Amazon Web Services (AWS) mit Amazon SageMaker verwenden. Du wirst die Schritte zum Erstellen, Trainieren und Bereitstellen eines ML-Modells anhand von Demonstrationen und Übungen unter Anleitung des Kursleiters erleben.


 


1. Einführung in das maschinelle Lernen


  • Vorteile des maschinellen Lernens (ML)
  • Arten von ML-Ansätzen
  • Rahmen für das Geschäftsproblem
  • Qualität der Vorhersage
  • Prozesse, Rollen und Verantwortlichkeiten für ML-Projekte


 


2. Vorbereiten eines Datensatzes


  • Datenanalyse und -aufbereitung
  • Werkzeuge zur Datenaufbereitung
  • Demonstration: Überprüfung von Amazon SageMaker Studio und Notebooks
  • Praktische Übung: Datenaufbereitung mit SageMaker Data Wrangler


 


3. Trainieren eines Modells


  • Schritte zum Trainieren eines Modells
  • Wählen eines Algorithmus
  • Trainieren des Modells in Amazon SageMaker
  • Praktische Übung: Trainieren eines Modells mit Amazon SageMaker
  • Amazon CodeWhisperer
  • Demonstration: Amazon CodeWhisperer in SageMaker Studio Notebooks


 


4. Evaluierung und Abstimmung eines Modells


  • Bewertung des Modells
  • Modellabstimmung und Hyperparameter-Optimierung
  • Praktische Übung: Modellabstimmung und Hyperparameter-Optimierung mit Amazon SageMaker


 


5. Einsetzen eines Modells


  • Modell-Einsatz
  • Praktische Übung: Bereitstellen eines Modells auf einem Echtzeit-Endpunkt und Generieren einer Vorhersage


 


6. Betriebliche Herausforderungen


  • Verantwortliches ML
  • ML-Team und MLOps
  • Automatisierung
  • Überwachung
  • Aktualisierung der Modelle (Modellprüfung und -bereitstellung)


 


7. Andere Werkzeuge für die Modellerstellung


  • Verschiedene Tools für unterschiedliche Fähigkeiten und Geschäftsanforderungen
  • Codefreies ML mit Amazon SageMaker Canvas
  • Demonstration: Überblick über Amazon SageMaker Canvas
  • Amazon SageMaker Studio Lab
  • Demonstration: Überblick über das SageMaker Studio Lab
  • (Optional) Praktische Übung: Integrieren einer Web-Anwendung mit einem Amazon SageMaker Model-Endpunkt
Dauer/zeitlicher Ablauf:
1 Tag
Ziele/Bildungsabschluss:
  • Erörtern der Vorteile verschiedener Arten des maschinellen Lernens für die Lösung von Geschäftsproblemen.
  • Beschreiben der typischen Prozesse, Rollen und Verantwortlichkeiten in einem Team, das ML-Systeme entwickelt und einsetzt.
  • Erläutern, wie Datenwissenschaftler AWS-Tools und ML verwenden, um ein allgemeines Geschäftsproblem zu lösen.
  • Zusammenfassen der Schritte, die ein Datenwissenschaftler zur Vorbereitung von Daten unternimmt.
  • Zusammenfassen der Schritte, die ein Datenwissenschaftler zum Trainieren von ML-Modellen unternimmt.
  • Zusammenfassen der Schritte, die ein Datenwissenschaftler zum Bewerten und Abstimmen von ML-Modellen durchführt.
  • Zusammenfassen der Schritte zur Bereitstellung eines Modells an einem Endpunkt und zur Erstellung von Vorhersagen.
  • Beschreiben der Herausforderungen bei der Operationalisierung von ML-Modellen.
  • Abgleichen von AWS-Tools mit ihrer ML-Funktion.
Zielgruppe:

Dieser Kurs richtet sich an Data-Science-Profis, Machine-Learning-Profis, Anwendungs-Entwickler:innen und DevOps-Ingenieur:innen sowie Systemarchitekt:innen.

Seminarkennung:
40975
Nach unten
Nach oben
Wir setzen Analyse-Cookies ein, um Ihre Zufriedenheit bei der Nutzung unserer Webseite zu verbessern. Diese Cookies werden nicht automatisiert gesetzt. Wenn Sie mit dem Einsatz dieser Cookies einverstanden sind, klicken Sie bitte auf Akzeptieren. Weitere Informationen finden Sie hier.
Akzeptieren Nicht akzeptieren









Um Spam abzuwehren, geben Sie bitte die Buchstaben auf dem Bild in das Textfeld ein:

captcha



Bei der Verarbeitung Ihrer personenbezogenen Daten im Zusammenhang mit der Kontaktfunktion beachten wir die gesetzlichen Bestimmungen. Unsere ausführlichen Datenschutzinformationen finden Sie hier. Bei der Kontakt-Funktion erhobene Daten werden nur an den jeweiligen Anbieter weitergeleitet und sind nötig, damit der Anbieter auf Ihr Anliegen reagieren kann.







Um Spam abzuwehren, geben Sie bitte die Buchstaben auf dem Bild in das Textfeld ein:

captcha