Seminare
Seminare

Machine Learning on Google Cloud

Seminar - Cegos Integrata GmbH

Modul 1: Wie Google maschinelles Lernen betreibt

  • Beschreiben Sie die Vertex AI Platform und wie sie verwendet wird, um AutoML-Modelle für maschinelles Lernen schnell zu erstellen, zu trainieren und einzusetzen, ohne eine einzige Zeile Code zu schreiben.
  • Beschreiben Sie bewährte Verfahren für die Implementierung von maschinellem Lernen in der Google Cloud.
  • Entwicklung einer Datenstrategie für maschinelles Lernen
  • Untersuchen Sie Anwendungsfälle, die dann durch eine ML-Linse neu konzipiert werden
  • Nutzen Sie die Tools und die Umgebung der Google Cloud Platform für ML

Modul 2: Einstieg in das maschinelle Lernen

  • Beschreiben Sie Vertex AI AutoML und wie Sie ein ML-Modell erstellen, trainieren und bereitstellen können, ohne eine einzige Zeile Code zu schreiben.
  • Beschreiben Sie Big Query ML und seine Vorteile.
  • Beschreiben Sie, wie Sie die Datenqualität verbessern können.
  • Führen Sie eine explorative Datenanalyse durch.
  • Erstellen und trainieren Sie überwachte Lernmodelle.
  • Optimieren und bewerten Sie Modelle mit Hilfe von Verlustfunktionen und Leistungsmetriken.
  • Entschärfen Sie häufige Probleme, die beim maschinellen Lernen auftreten.
  • Erstellen Sie wiederholbare und skalierbare Trainings-, Bewertungs- und Testdatensätze.

Modul 3: TensorFlow in der Google Cloud

Erstellen Sie TensorFlow und Keras Modelle für maschinelles Lernen....

Termin Ort Preis*
24.02.2025- 28.02.2025 Garching b.München 3.867,50 €
12.05.2025- 16.05.2025 Garching b.München 3.867,50 €
04.08.2025- 08.08.2025 Hamburg 3.867,50 €
01.12.2025- 05.12.2025 Hamburg 3.867,50 €
firmenintern auf Anfrage auf Anfrage

Alle Termine anzeigen

*Alle Preise verstehen sich inkl. MwSt.

Detaillierte Informationen zum Seminar

Inhalte:

In diesem Kurs lernen Sie, wie Sie Vertex AI AutoML-Modelle erstellen, ohne eine einzige Zeile Code zu schreiben, wie Sie BigQuery ML-Modelle mit grundlegenden SQL-Kenntnissen erstellen, wie Sie benutzerdefinierte Vertex AI-Trainingsaufträge erstellen, die Sie mithilfe von Containern bereitstellen - mit geringen Kenntnissen über Docker, wie Sie Feature Store für Datenmanagement und Governance verwenden, wie Sie Feature Engineering für die Modellverbesserung nutzen, wie Sie die geeigneten Optionen für die Datenvorverarbeitung für Ihren Anwendungsfall bestimmen, wie Sie verteilte ML-Modelle schreiben, die in TensorFlow skalieren, und wie Sie Best Practices für die Implementierung von maschinellem Lernen in der Google Cloud nutzen. Lernen Sie all dies und mehr!

Dauer/zeitlicher Ablauf:
5 Tage
Ziele/Bildungsabschluss:
  • Mit Vertex AI AutoML können Sie ein maschinelles Lernmodell erstellen, trainieren und bereitstellen, ohne eine einzige Zeile Code schreiben zu müssen.
  • Verstehen Sie, wann Sie AutoML und Big Query ML verwenden sollten.
  • Erstellen Sie von Vertex AI verwaltete Datensätze.
  • Features zu einem Feature Store hinzufügen.
  • Beschreiben Sie Analytics Hub, Dataplex, Data Catalog.
  • Beschreiben Sie das Hyperparameter-Tuning mit Vertex Vizier und wie es zur Verbesserung der Modellleistung eingesetzt werden kann.
  • Erstellen Sie ein benutzerverwaltetes Vertex AI Workbench-Notizbuch, erstellen Sie einen benutzerdefinierten Trainingsauftrag und stellen Sie ihn dann mithilfe eines Docker-Containers bereit.
  • Beschreiben Sie Batch- und Online-Vorhersagen und die Modellüberwachung.
  • Beschreiben Sie, wie Sie die Datenqualität verbessern können.
  • Führen Sie eine explorative Datenanalyse durch.
  • Erstellen und trainieren Sie überwachte Lernmodelle.
  • Optimieren und bewerten Sie Modelle mit Hilfe von Verlustfunktionen und Leistungsmetriken.
  • Erstellen Sie wiederholbare und skalierbare Trainings-, Evaluierungs- und Testdatensätze.
  • Implementierung von ML-Modellen mit TensorFlow/Keras.
  • Beschreiben Sie, wie man Merkmale darstellt und umwandelt.
  • Verstehen Sie die Vorteile der Anwendung von Feature Engineering
  • Erklären Sie Vertex AI Pipelines
Teilnahmevoraussetzungen:
  • Gewisse Vertrautheit mit grundlegenden Konzepten des maschinellen Lernens.
  • Grundkenntnisse in einer Skriptsprache - Python bevorzugt.
Zielgruppe:
  • Angehende Datenwissenschaftler und Ingenieure für maschinelles Lernen.
  • Lernende, die ML mit Vertex AI AutoML, BQML, Feature Store, Workbench, Dataflow, Vizier für Hyperparameter-Tuning, TensorFlow/Keras kennenlernen möchten.
Seminarkennung:
39078
Nach unten
Nach oben
Wir setzen Analyse-Cookies ein, um Ihre Zufriedenheit bei der Nutzung unserer Webseite zu verbessern. Diese Cookies werden nicht automatisiert gesetzt. Wenn Sie mit dem Einsatz dieser Cookies einverstanden sind, klicken Sie bitte auf Akzeptieren. Weitere Informationen finden Sie hier.
Akzeptieren Nicht akzeptieren









Um Spam abzuwehren, geben Sie bitte die Buchstaben auf dem Bild in das Textfeld ein:

captcha



Bei der Verarbeitung Ihrer personenbezogenen Daten im Zusammenhang mit der Kontaktfunktion beachten wir die gesetzlichen Bestimmungen. Unsere ausführlichen Datenschutzinformationen finden Sie hier. Bei der Kontakt-Funktion erhobene Daten werden nur an den jeweiligen Anbieter weitergeleitet und sind nötig, damit der Anbieter auf Ihr Anliegen reagieren kann.







Um Spam abzuwehren, geben Sie bitte die Buchstaben auf dem Bild in das Textfeld ein:

captcha